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By RICHARD COOK 

One of NASA’s great strengths over the past fifty years has been our ability to execute complex, one
of-a-kind projects. In some cases, we have literally written the book on how to carry out programs with  
difficult technological, scientific, or programmatic objectives. It is somewhat surprising, therefore,  
that we’ve had significant problems in the past few years with some highly visible, complex projects.  
I work on one of those projects, the Mars Science Laboratory (MSL).  
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The parachute for NASA s Mars 
Science Laboratory (MSL) 

being tested inside the world s 
largest wind tunnel at Ames 

Research Center. An engineer is 
dwarfed by the parachute, the 

largest ever built to fly on an 
extraterrestrial flight. P
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Artist ’s concept of the  
Mars Science Laboratory  
in Martian terrain. 

Im
ag

e 
C

re
d

it
: N

A
S

A
/J

P
L

 C
al

te
ch

 
56 | ASK MAGAZINE 

MSL is the next major step forward in NASA’s Mars Exploration 
Program and will address key questions about the past and current 
habitability of Mars. The project is also developing critical new 
technology for landing on Mars, acquiring and processing surface 
samples, and conducting long-duration surface operations. This 
is probably the most complex planetary mission that NASA has 
ever attempted. As a result, it has stressed our implementation 
processes, our technology, our engineering capabilities, and our 
people. Although the project hasn’t launched yet, it has been 
extraordinarily useful in one regard: demonstrating the challenges 
of managing complexity on large-scale programs. 

So, what is complexity? The word is frequently thrown 
around as a sort of synonym for “difficult.” But it is more than 
that. Paraphrasing Webster, “Complexity is the quality of being 
intricately combined.” The characteristic that separates complex 
projects from merely difficult ones is the number of interconnected 
elements that are tied either technically or programmatically. 
Flagship efforts are becoming increasingly difficult and complex. 
Increased complexity is a primary cause for the challenges we’ve 
experienced. The MSL development experience is rich with 
examples where our ability (or inability) to effectively manage 
complexity has provided valuable lessons. 

At the recent Project Management (PM) Challenge in Long 
Beach, California, I gave a presentation on those lessons across 
domains including technology infusion, margin management, 
schedule planning and oversight, and the role of external reviews. 
Given space limitations here, I will focus on the connections 
between system architecture and complexity. 

Defining the right system architecture—the top-level 
structural and behavioral relationships between parts of a system— 
is critical to managing complexity. So what makes the “right” 
system architecture? The easiest answer is, the one that is as simple 
as possible but no simpler; the one with the most “separation” 
between elements; the one with the simplest interfaces, the most 
functional independence, the least reliance on those one-size-fits
all solutions that drive custom-interface accommodation. Greater 

complexity and interaction mean increased potential for problems 
and increased difficulty in testing to discover them. 

Unfortunately, a number of factors frequently undermine 
system architecture simplicity. Examples include technology 
limitations and complexity, mass/volume constraints, cost, and 
the use of heritage hardware. I could mention several examples 
of MSL handling systems complexity well, but I’ll start with one 
where we didn’t. 

ThE ChArACTErISTIC ThAT SEPArATES 

CoMPLEx ProJECTS FroM MErELy 

DIFFICULT oNES IS ThE NUMbEr oF 

INTErCoNNECTED ELEMENTS ThAT 

ArE TIED EIThEr TEChNICALLy or 

ProGrAMMATICALLy. 

We inherited several key aspects of the MSL architecture 
from the Mars Exploration Rover program. One example was 
having the rover’s avionics control the entire mission from launch 
through landing. This architecture was adopted for MSL despite 
the fundamentally different functions for launch; cruise; entry, 
descent, and landing (EDL); and rover operations. The intent 
was to take advantage of the core elements of the rover avionics 
(the processor, the power converters) to perform cruise and EDL 
functions. Adding additional boxes outside the rover required 
accepting the associated cost, schedule, and mass impacts. The 
problem with this architecture is that it significantly increased 
the complexity of the design by functionally integrating the rover 
and cruise/EDL systems. The cruise/EDL system could not be 
designed and tested independently from the rover because it was 
an integrated system. 
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Spacecraft technicians  
at the Jet Propulsion  

Laboratory prepare a  
space -simulation test of the  

Mars Science Laboratory  
cruise stage in a facility that  
simulates the cold, vacuum  

environment of space.  
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So why was this choice made? We did an early concept 
study of a “smart” descent stage. The idea was to put enough 
avionics on the descent stage to control the vehicle during cruise 
and EDL (the rover would be along for the ride). The primary 
reason we didn’t choose that approach is that we have a tendency 
in the early phases of a project to base system-design choices 
on box-level factors. Because the cost, schedule, and design of 
boxes can be coarsely quantified, it is simpler to factor them 
into design choices. Less apparent factors like the amount of 
input/output a box requires, the interface complexity, fault-
protection implications, and verification challenges—all 
byproducts of system complexity—are difficult to quantify 
and factor into system decisions. These items typically don’t 
manifest themselves until later in the development cycle and 
are frequently the source of significant cost growth. By not 
adequately factoring this cost-growth risk into the system trade, 
we ended up with a design with the fewest number of boxes 
rather than the least complex architecture. 

Another driver toward functional over-integration is the 
pervasive impact electronics technology is having on our core 
systems. Unlike the world of thirty years ago, virtually all electronics 
we use today come from a commercial sector with different and 
diverse technology drivers, not just space applications. The increased 
functionality possible with high-density field-programmable gate 
arrays (FPGAs), low-voltage parts, and high-speed bus architectures 
are dramatic and enabling, but they increase complexity enormously. 
The pressure to have “less” hardware and depend more on software 
results in highly integrated and highly complex designs. 

One associated pitfall is that we don’t approach the 
incorporation of these new devices into our systems with the 
same degree of rigor we treat other types of technology. That 
may partly be due to the perceived maturity of the commercial 
components. We frequently have trouble with parts that have a 
commercial track record but haven’t been through a full flight-
qualification program. A good success story on MSL was our 
efforts to “mature” high-density, radiation-tolerant FPGAs. 
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ThE PrESSUrE To hAvE “LESS” hArDwArE AND DEPEND MorE oN SoFTwArE rESULTS 

IN hIGhLy INTEGrATED AND hIGhLy CoMPLEx DESIGNS. 

The Mars Reconnaissance Orbiter and other programs had 
experienced a series of problems with less dense parts, so MSL 
adopted an aggressive program to establish acceptable design 
guidelines, packaging/rework approaches, and thermal control/ 
qualification strategies. The result was that the project did 
not experience significant FPGA technology issues during the 
build/test campaign.1 

The FPGA challenges we did have were associated with 
the design complexity caused by functional over-integration. 
The large number of logic gates available in modern FPGAs 
allows many functions to be combined into a single component. 
This does complicate the design effort, although some parts 
of the FPGA “code” can be developed by parallel teams. The 
verification and validation effort, however, grows dramatically 
because so much functionality is combined. Our test methods 
don’t really support ways of performing rapid, parallel testing of 
a single, highly integrated element. A long serial-test program 
is difficult to manage, is brittle to changes and problems, and 
can be inappropriately curtailed if schedule pressure mounts. 
A design based on a larger number of simpler elements would 
permit parallel component testing and (with appropriate interface 
definition) simpler system testing as well. 

Fault tolerance is another system-architecture driver that can 
significantly affect complexity. Inappropriate evaluation of local-
versus-system fault tolerance can dramatically increase complexity 
without necessarily improving overall reliability. An example from 
MSL was the incorporation of partial redundancy in the core rover 
avionics. The mass and volume of the avionics are major drivers 
on both the rover configuration and the required capabilities of 
the entry, descent, and landing system. Heavier or larger avionics 
increase EDL system risk by reducing control-system performance 
margins or increasing landing velocity and loads. 

Intrinsically, however, avionics fault tolerance is provided 
by adding redundant boxes with some degree of cross-strapping.  
(Cross-strapping permits redundant boxes to work with other  
redundant elements in the system architecture.) On MSL, the  

project took an intermediate position of incorporating some 
partial avionics redundancy to mitigate box-level failures while 
not driving EDL risk adversely. Unfortunately, the resulting 
system is neither fish nor fowl from a complexity perspective. 
By having a combination of single-string and redundant elements, 
the resulting fault-containment architecture is more complex 
and more difficult to design, analyze, and verify than either a 
single-string or fully redundant design. The marginal increase in 
reliability associated with the partial redundancy may not have 
been worth the increased complexity. 

These are just a few examples of the drivers that can push 
a system architecture toward increased complexity. Potential 
institutional mitigations could include additional training to 
increase our systems engineering expertise on both the sources 
and consequences of architectural choices. Additional efforts can 
also be made to rigorously review system architecture choices to 
understand the long-term implications. Upgrading our cost and 
schedule estimation processes to capture the impact of complexity 
on cost and schedule risk would also be very useful. 

From the perspective of an individual project manager, 
establishing simplicity as a programmatic goal is both a symbolic 
and a real step toward managing development risk. This is 
particularly imperative for projects with profound technical and 
engineering challenges. Intrinsically difficult missions like MSL 
are made much more challenging if managing complexity gets 
inadequate attention. Policy direction advocating simplicity is a 
useful first step to keeping complexity contained. ● 

richard cook is the deputy project manager of the Mars 
Science Laboratory at the Jet Propulsion Laboratory. He is a 
veteran of NASA’s Mars Exploration Program, having held key 
roles on Mars Pathfinder, Mars rovers Spirit and Opportunity, and 
Mars Surveyor ’98. 

1. we did have FPGA problems associated with design complexity (we tried to put too much functionality into a given part), 
which led to very long delivery delays and test-program challenges. The fundamental part technology worked, however. 


